
PSE-Free PoET

Credits: Mic Bowman



PoET overview

• Proof of: valid enclave, time and wait.

• Wait enforced & attested by the enclave.

• Valid attestation == assurance that wait occurred
• Incoming block can be forwarded immediately

• Time used as tie-breaker for fork resolution

• Monotonic counters used to match requests to enclave
• Ensure single outstanding request

• Ensure correctness over reboots

Clock & Monotonic counters rely on Platform Services. Not available on Xeon class machines.



3

Summary of Changes to PoET
• Enclave creates and registers an ECDSA signing key every time it is initialized 

including every time the processor is booted
• Only one key at a time may be registered for a given EPID pseudonym
• In addition to the C-test, there is a mandatory delay between registrations for a given 

EPID pseudonym (like C-test, but R-test throttles registrations rather use)

• Define a “CreateDuration” instead of “CreateWaitTimer”, 
• Generates a 256 bit random number (uniform distribution), called ‘Duration’
• Enclave will create at most one number per block number 
• Duration is used to determine time to wait

• “CreateWaitCertificate” creates an SGX signed certificate containing the Duration

• The community of validators enforces the wait
• Wait is determined from block clock/wall clock synchronization
• All handling of the local mean occurs outside the enclave



4

Enclave Initialization 

• Enclave creates a new ECDSA key pair on initialization
• There is no option to load an old key pair from sealed storage

• The Enclave’s public key must be registered with the ledger
• Sign up process is the same as before, at least K blocks must have passed since the last 

time a key was registered for the server

• The enclave may not validate a block until at least C blocks have been added to the 
chain since the enclave was registered. 

• PERFORMANCE IMPLICATION  One IAS request and one registration transactions per 
boot

• Enclave keeps in memory the ECDSA key pair and a table mapping block number 
to wait certificates 



WaitCertificate composition



WallClock & ChainClock

• WallClock (WC)
• Maintained independently by each validator

• Number of seconds since the validator’s ‘synchronization event’

• Real time, reasonably accurate but shouldn’t drift excessively

• ChainClock (CC)
• Sum of Durations of all blocks since the synchronization event

• In practice, sum of ‘Wait Times’ computed from the Duration

• Block Eligible for consensus if CC <= WC



Validator enforced wait

• Upon WaitCertificate creation, originating validator computes 
WaitTime from Duration & waits

• Block is forwarded after WaitTime seconds

• On neighboring validators:
• New ChainClock CC’ = CC+WaitTime

• If CC’ <= WC, block is eligible for consensus

• Else (early arriving block), wait until WC catches up

• The wait is primarily for the purpose of improving efficiency



Block Publishing

• Start assembling the proposed block

• Get the Duration from the enclave and compute WaitTime

• Set a timer (outside SGX)

• On timer expiration, stop assembling the block, get transaction details

• Compute WaitCertificate with transaction details

• Publish Block, WaitCertificate



Block verification, Leader election

• Incoming block verification:
• WaitCertificate verification

• C, Z, K, R tests

• CC’ <= WC

• For eligible blocks, a winning block should:
• Extend the longest valid fork

• Fork resolution order: 
• Longest valid fork

• Shortest CC’ 

• Tie breaker: smallest Duration value



Bootstrapping new validators
• What happens if a new validator joins an existing network?

• When do we start WC & CC?

• How can the validator catch up?

• On registration, define a ‘Synchronization block’: Random block 
between validator registration & Cth block 

• Start building chain by requesting blocks from neighbors

• When Synchronization Block is received, WC = CC = 0

• No Eligibility checks before Cth block (all prior blocks are ‘Eligible’)

• At the end of C block delay:
• Start creating new block
• Start Validator Enforced Wait (i.e. enforce CC’ <= WC)


